

MOTIVATION

surface

Numerical Modeling of Atmospheric Re-entry **Environment for TPS Design**

Abhilasha Anna, lain D. Boyd

Hypersonic vehicles experience

- aerodynamic heat loads: Cause very high temperatures on their
- Use Thermal Protection System (TPS)
- Prolonged exposure to high temperature and chemical reactions can cause TPS to fail
- Depending on the heat load

Ablative TPS (eg. Stardust)

- Surface heating affected by:
- Non-ablative (eg. Space shuttle)
- Catalycity of the TPS material
- Chemical reaction between the surface material and boundary layer gases --> surface recession

Accurate modeling of these gas-surface interactions is necessary for the prediction of aerothermal heating of the vehicle TPS

OBJECTIVES

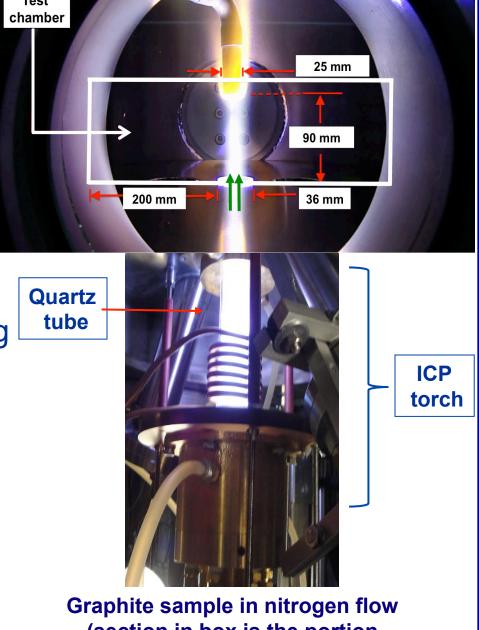
- Investigate surface chemistry models to describe dominant gas-surface interaction processes (e.g. catalysis, nitridation) implemented in a CFD code.
- current study is an extension to previous **studies** (AIAA-2012-534, RTO-AVT-199-2012, AIAA-2013-0187)
- gas-surface interaction model used (surface catalysis and surface participating reactions eg. nitridation, oxidation)
- Gas considered: Pure Nitrogen
- physical accuracy of the computational results assessed using experimental data generated in high-enthalpy facility at the University of Vermont (UVM)
- sensitivity analysis of the free stream chemical composition performed

TECHNICAL APPROACH

Species boundary conditions

- finite rate surface chemistry (FRSC) model (Maclean & Marshall 2011, Alkandry et. al 2012): surface catalysis and surface participating reactions (eg. nitridation, oxidation)
- Gas-surface interaction processes studied:
 - recombination of N atoms to molecules at the surface due to catalysis
 - carbon nitridation: N atoms react with the surface carbon to form gaseous CN
- FRSC model used to simulate a constant reaction efficiency γ

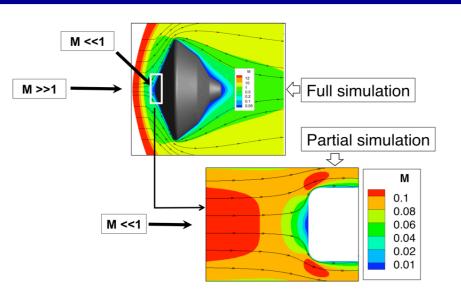
1) $N + (s) \rightarrow N(s)$: Adsorption (E_{ad} = 0 J/mol) $N + N(s) \rightarrow N_2 + (s)$: Eley-Rideal recombination (E_{FR} = 0 J/mol)


2) $N + (s) \rightarrow N(s)$: Adsorption (E_{ad} = 0 J/mol)

 $N + N(s) \rightarrow N_2 + (s)$: Eley-Rideal recombination (E_{FR} = 0 J/mol) $C_b + N + (s) \rightarrow CN + (s)$: Eley-Rideal recombination (E_{ER} = 0 J/mol)

 $\gamma = \frac{2S_0\gamma_N + \gamma_{CN}\gamma_N}{2S_0}$

ASSESSMENT OF COMPUTATIONS

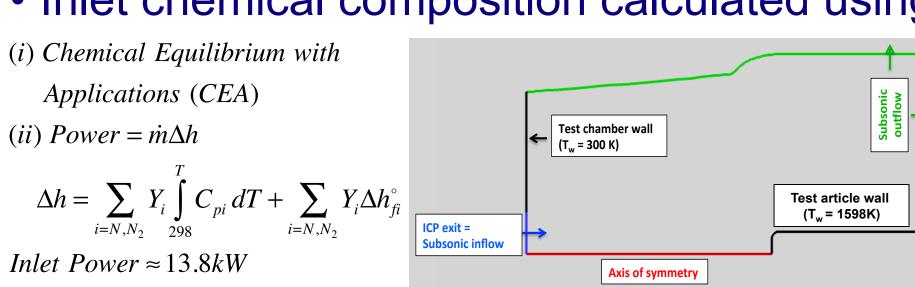

- Assessment of simulations performed using experimental Chamber tests at UVM
- 30 kW Inductively Coupled Plasma (ICP) Torch Facility
- Samples exposed to high enthalpy subsonic gas flows
- Flow quantities measured using two-photon Laser Induced Fluorescence (LIF) technique:
- Relative N-atom number density
- Translational temperature
- Surface temperature and sample ablation also quantified

(section in box is the portion simulated) Source: Prof. D.G. Fletcher (UVM)

FLOW DOMAIN INVESTIGATED

Entry flight environment considered: Post shock subsonic high enthalpy gas flow

TECHNICAL APPROACH


- Computational Tools: LeMANS: CFD code developed at the University of Michigan (Scalabrin and Boyd: AIAA-2006-3773)
 - solves laminar Navier-Stokes equations
 - can account for thermo-chemical nonequilibrium effects
 - finite volume algorithm with point/line implicit time integration
 - -2D/3D/Axisymmetric simulations on structured/unstructured grids
 - -parallelized using domain decomposition

NUMERICAL SETUP

 Free stream values and wall temperature based on experimental setup

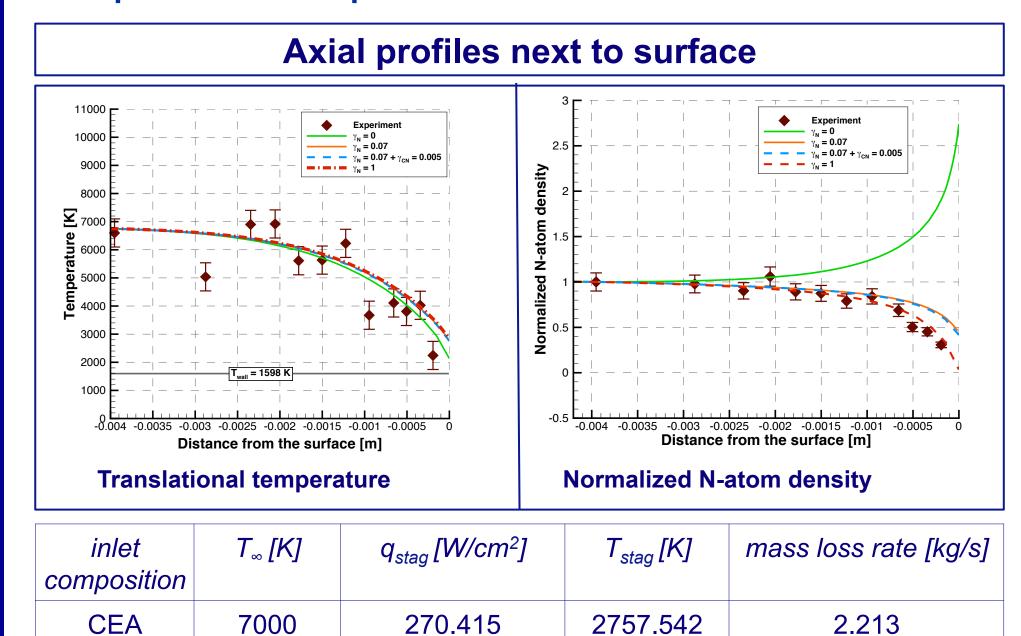
Mass flow rate [kg/s]	T _∞ [K]	P _∞ [kPa]	$T_w[K]$
0.82 x 10 ⁻³	7000	21.3	1598

Inlet chemical composition calculated using

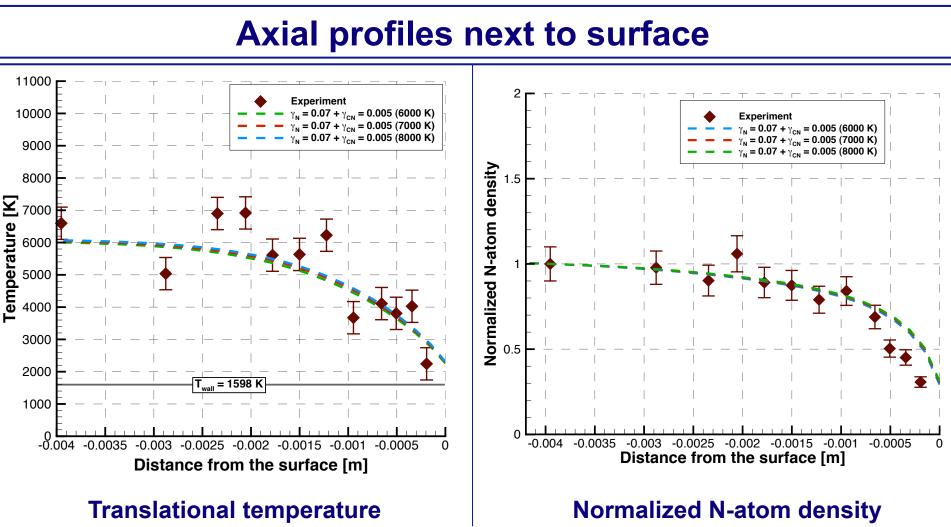
- Flow physics model: Thermochemical nonequilibrium
- **Boundary conditions**
- Radiative equilibrium
- Grid generated: Pointwise
 - 22,000 quadrilateral cells

Acknowledgments

AFOSR Grant FA-9550-11-1-0309

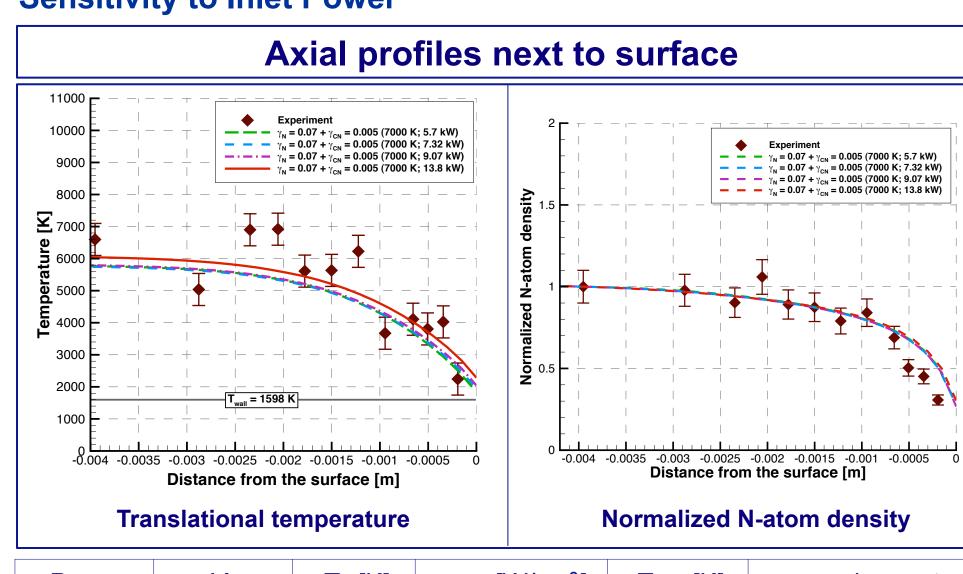

 Prof. Doug Fletcher and his graduate students, University of Vermont

RESULTS


13.8 kW

Comparison with Experimental Data

NGPDL, University of Michigan



2284.063

Power [kW]	T _∞ [K]	q _{stag} [W/cm²]	T _{stag} [K]	mass loss rate [kg/s]
13.8	6000	122.258	2258.888	0.831
13.8	7000	127.783	2284.063	0.861
13.8	8000	133.198	2307.974	0.899

Sensitivity to Inlet Power

Power [kW]	X_N	$T_{\infty}[K]$	q _{stag} [W/cm²]	T _{stag} [K]	mass loss rate [kg/s]
5.7	0	7000	51.856	1820.910	0.113
7.3	0.1	7000	65.953	1934.392	0.265
9.1	0.2	7000	81.662	2041.070	0.422
13.8	0.423	7000	127.783	2284.063	0.861
Experiment		~7000	40 - 80	~ 1600	0.2 - 0.6

CONCLUSIONS

- Temperature in the boundary layer not affected by different surface reactions
- Nitrogen atom density decreased when surface chemistry was included
- Carbon mass loss, stagnation temperature and heat flux
 - decreased significantly for chemical composition calculated using inlet power as opposed to the equilibrium composition calculated using CEA
 - not significantly sensitive to inlet temperature
 - significantly sensitive to inlet power